Sepsis is a race against time. Rapidly identify more of the organisms that cause sepsis with the only test for rapid, routine blood culture identification.

COMPREHENSIVE COVERAGE OF PATHOGENS AND RESISTANCE GENES

<table>
<thead>
<tr>
<th>Gram-Positive Targets</th>
<th>Gram-Negative Targets</th>
<th>Fungal Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus cereus group</td>
<td>Acinetobacter baumannii</td>
<td>Candida albicans</td>
</tr>
<tr>
<td>Bacillus subtilis group</td>
<td>Bacteroides fragilis Citrobacter</td>
<td>Candida auris</td>
</tr>
<tr>
<td>Corynebacterium</td>
<td>Cronobacter sakazakii</td>
<td>Candida dubliniensis</td>
</tr>
<tr>
<td>Cutibacterium acnes</td>
<td>Enterobacter</td>
<td>Candida famata</td>
</tr>
<tr>
<td>(Propionibacterium acnes)</td>
<td>(non-\textit{clovea} complex)</td>
<td>Candida glabrata</td>
</tr>
<tr>
<td>Enterococcus</td>
<td>Enterobacter cloacae complex</td>
<td>Candida guilliermondii</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>Escherichia coli Fussobacterium</td>
<td>Candida kefyr</td>
</tr>
<tr>
<td>Enterococcus faecium</td>
<td>nucleatum Neisseria meningitidis Proteus</td>
<td>Candida krusei</td>
</tr>
<tr>
<td>Lactobacillus</td>
<td>Proteus mirabilis Pseudomonas</td>
<td>Candida lusitaniae</td>
</tr>
<tr>
<td>Listeria</td>
<td>aeruginosa Salmonella</td>
<td>Candida parapsilosis</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>Serratia</td>
<td>Candida tropicalis</td>
</tr>
<tr>
<td>Morococcus</td>
<td>Serratia marcescens</td>
<td>Cryptococcus gattii</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>Stenotrophomonas maltophilia</td>
<td>Cryptococcus neoformans</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td></td>
<td>Fusarium</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td></td>
<td>Rhodotorula</td>
</tr>
<tr>
<td>Staphylococcus lugdunensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus agalactiae (GBS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus anginosus group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus pyogenes (GAS)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resistant Genes

- meca
- vanA
- vanB

Pan Targets

- Candida
- Gram-Positive

Contaminants in blood cultures are common and can lead to unnecessary use of antibiotics that increase cost of treatment and toxicity to the patient.

Treatment of blood culture contaminants leads to increased length of stay 5.4 days.

Total costs Increased by $7,502.

References

2. H-Cup Statistical Brief #204: May 2016
7. Based on ePlex panel inclusivity compared to the GenMark prospective clinical trial database and an additional clinical data set (Potsa, et. al., MLD, 2015), not intended as sensitivity/performance claim.
RAPID IDENTIFICATION OF BLOOD STREAM INFECTIONS (BSI) SAVES LIVES

Rapid identification of organisms that cause sepsis is critical.

This is most urgent in the 20-30% of sepsis patients who receive ineffective initial antibiotic therapy.

For every hour effective antibiotics are delayed, the sepsis mortality rate increases by about 8%.

RESISTANCE GENE DETECTION AIDS IN MORE RAPID TARGETED THERAPY

Broad spectrum therapeutic strategies, as are applied in Sepsis treatment, are known to be associated with high costs, development of antimicrobial resistance and increased mortality rates, thereby making it crucial to de-escalate empiric therapy as early as possible.

Rates of antimicrobial de-escalation range from approximately 10-70% suggesting the de-escalation of antimicrobials by clinicians may be difficult.

Rapid molecular identification of BSI with Antimicrobial Stewardship has been shown to decrease time to targeted therapy by ~25 hours and mean length of hospital stay by 2.5 days.

It can also aid in reducing treatment of contaminants and use of broad spectrum antimicrobials.

RESISTANCE GENE DETECTION AIDED IN MORE RAPID TARGETED THERAPY

Rapid molecular identification of BSI with Antimicrobial Stewardship has been shown to decrease time to targeted therapy by:

- ~25 hours
- 2.5 days

It can also aid in reducing treatment of contaminants and use of broad spectrum antimicrobials.

MAKE INFORMED TREATMENT DECISIONS EARLIER

With ePlex BCID panels, you can rapidly detect more sepsis-causing pathogens and potential blood culture contaminants than with other molecular panels, potentially aiding in earlier targeted treatment, which can shorten hospital length of stay, reduce costs and improve patient outcomes.

Earlier detection of organisms causing sepsis along with their resistance genes can enable you to prescribe the right antibiotic days earlier than with conventional methodologies, this is especially important for those infections not covered by empiric treatment.

De-escalation of empirical antimicrobial therapy can more effectively target the causative pathogen, resulting in decreased antimicrobial exposure, substantial cost savings and potentially improved clinical outcomes. With the ePlex System, you can detect contaminants that other molecular assays don’t, allowing you to more rapidly de-escalate unnecessary antibiotics and get patients out of the hospital sooner.

Rapid ePlex BCID results and customizable Templated Comments module can enhance sepsis patient management and help you achieve your antimicrobial stewardship goals.

THE VALUE OF ePLEX BCID PANELS

- Detect >95% of the organisms responsible for sepsis and BSI saving days compared to conventional methods
- Rapid detection of resistance genes allow for earlier treatment decisions
- Rapidly rule-out potential blood culture contamination for earlier de-escalation of unnecessary antimicrobials
- Identify important, difficult-to-culture anaerobes often missed by culture or not included on other molecular panels
- Detect rare and emerging fungal pathogens for faster diagnosis of your most critical patients
- Pan Targets help ensure that polymicrobial infections won’t be missed